Bounds and Invariant Sets for a Class of Switching Systems with Delayed-state-dependent Perturbations
نویسندگان
چکیده
We present a novel method to compute componentwise transient bounds, componentwise ultimate bounds, and invariant regions for a class of switching continuous-time linear systems with perturbation bounds that may depend nonlinearly on a delayed state. The main advantage of the method is its componentwise nature, i.e. the fact that it allows each component of the perturbation vector to have an independent bound and that the bounds and sets obtained are also given componentwise. This componentwise method does not employ a norm for bounding either the perturbation or state vectors, avoids the need for scaling the different state vector components in order to obtain useful results, and may also reduce conservativeness in some cases. We give conditions for the derived bounds to be of local or semi-global nature. In addition, we deal with the case of perturbation bounds whose dependence on a delayed state is of affine form as a particular case of nonlinear dependence for which the bounds derived are shown to be globally valid. A sufficient condition for practical stability is also provided. The present paper builds upon and extends to switching systems with delayed-state-dependent perturbations previous results by the authors. In this sense, the contribution is three-fold: the derivation of the aforementioned extension; the elucidation of the precise relationship between the class of switching linear systems to which the proposed method can be applied and those that admit a common quadratic Lyapunov function (a question that was left open in our previous work); and the derivation of a technique to compute a common quadratic Lyapunov function for switching linear systems with perturbations bounded componentwise by affine functions of the absolute value of the state vector components. In this latter case, we also show how our componentwise method can be combined with standard techniques in order to derive bounds possibly tighter than those corresponding to either method applied individually.
منابع مشابه
Generating Discrete Trace Transition System of a Polyhe-dral Invariant Hybrid Automaton
Supervisory control and fault diagnosis of hybrid systems need to have complete information about the discrete states transitions of the underling system. From this point of view, the hybrid system should be abstracted to a Discrete Trace Transition System (DTTS) and represented by a discrete mode transition graph. In this paper an effective method is proposed for generating discrete mode trans...
متن کاملRobust H2 switching gain-scheduled controller design for switched uncertain LPV systems
In this article, a new approach is proposed to design robust switching gain-scheduled dynamic output feedback control for switched uncertain continuous-time linear parameter varying (LPV) systems. The proposed robust switching gain-scheduled controllers are robustly designed so that the stability and H2-gain performance of the switched closed-loop uncertain LPV system can be guaranteed even und...
متن کاملPD Controller Design with H¥ Performance for Linear Systems with Input Delay
This paper presents H∞ control problem for input-delayed systems. A neutral system approach is considered to the design of PD controller for input delay systems in presence of uncertain time-invariant delay. Using this approach, the resulting closed-loop system turns into a specific time-delay system of neutral type. The significant specification of this neutral system is that its delayed coeff...
متن کاملA new switching strategy for exponential stabilization of uncertain discrete-time switched linear systems in guaranteed cost control problem
Uncertain switched linear systems are known as an important class of control systems. Performance of these systems is affected by uncertainties and its stabilization is a main concern of recent studies. Existing work on stabilization of these systems only provides asymptotical stabilization via designing switching strategy and state-feedback controller. In this paper, a new switching strate...
متن کاملStability of Invariant Sets of Itô Stochastic Differential Equationswith Markovian Switching
Invariant sets of dynamic systems play an important role in many situations when the dynamic behavior is constrained in some way. Knowing that a set in the state space of a system is invariant means that we have bounds on the behavior. We can verify that pre-specified bounds which originate from, for example, safety restrictions, physical constraints, or state-feedback magnitude bounds are not ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Automatica
دوره 49 شماره
صفحات -
تاریخ انتشار 2013